

SEMITOP®4

3-phase bridge rectifier +
brake chopper + 3-phase
bridge inverter

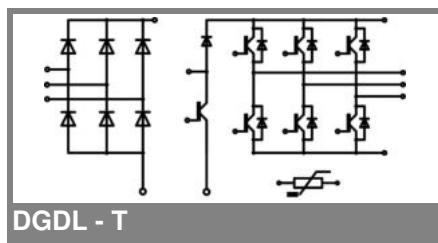
SK 50 DGDL 066 T

Preliminary Data

Features

- One screw mounting module
- Fully compatible with SEMITOP®1,2,3
- Improved thermal performances by aluminium oxide substrate
- Trench IGBT technology
- CAL technology free-wheeling diode
- Integrated NTC temperature sensor

Typical Applications*


- Inverter up to 12,5 kVA
- Typical motor power 5,5 kW

Remarks

- $V_{CE,sat}$, V_F = chip level value

Absolute Maximum Ratings		$T_s = 25^\circ\text{C}$, unless otherwise specified		
Symbol	Conditions	Values		Units
IGBT - Inverter, Chopper				
V_{CES}		600		V
I_C	$T_s = 25 (70)^\circ\text{C}$, $T_j = 175^\circ\text{C}$	69 (55)	A	
I_C	$T_s = 25 (70)^\circ\text{C}$, $T_j = 150^\circ\text{C}$	62 (47)	A	
I_{CRM}	$I_{CRM} = 2 \times I_{Cnom}$, $t_p = 1 \text{ ms}$	100	A	
V_{GES}		± 20	V	
T_j		-40 ... + 175		$^\circ\text{C}$
Diode - Inverter, Chopper				
I_F	$T_s = 25 (70)^\circ\text{C}$, $T_j = 150^\circ\text{C}$	48 (35)	A	
I_F	$T_s = 25 (70)^\circ\text{C}$, $T_j = 175^\circ\text{C}$	54 (42)	A	
I_{FRM}	$I_{FRM} = 2 \times I_{Fnom}$, $t_p = 1 \text{ ms}$	56	A	
Diode - Rectifier				
V_{RRM}		800	V	
I_F	$T_s = 70^\circ\text{C}$	35	A	
I_{FSM}	$t_p = 10 \text{ ms}$, $\sin 180^\circ$, $T_j = 25^\circ\text{C}$	370	A	
i^2t	$t_p = 10 \text{ ms}$, $\sin 180^\circ$, $T_j = 25^\circ\text{C}$	680	A^2s	
T_j		-40 ... + 175		$^\circ\text{C}$
T_{sol}	Terminals, 10 s	260		$^\circ\text{C}$
T_{stg}		-40 ... + 125		$^\circ\text{C}$
V_{isol}	AC, 1 min.	2500	V	

Characteristics		$T_s = 25^\circ\text{C}$, unless otherwise specified		
Symbol	Conditions	min.	typ.	max.
IGBT - Inverter, Chopper				
$V_{CE(sat)}$	$I_{Cnom} = 50 \text{ A}$, $T_j = 25 (150)^\circ\text{C}$	1,05	1,45 (1,65)	1,85 (2,05)
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 0,8 \text{ mA}$	5	5,8	6,5
$V_{CE(TO)}$	$T_j = 25 (150)^\circ\text{C}$		0,9 (0,8)	1,1 (1)
r_{CE}	$T_j = 25 (150)^\circ\text{C}$		11 (17)	15 (21)
C_{ies}	$V_{CE} = 25 \text{ V}$, $V_{GE} = 0 \text{ V}$, $f = 1 \text{ MHz}$		3,1	nF
C_{oes}	$V_{CE} = 25 \text{ V}$, $V_{GE} = 0 \text{ V}$, $f = 1 \text{ MHz}$		0,2	nF
C_{res}	$V_{CE} = 25 \text{ V}$, $V_{GE} = 0 \text{ V}$, $f = 1 \text{ MHz}$		0,093	nF
$R_{th(j-s)}$	per IGBT		0,95	K/W
$t_{d(on)}$	under following conditions		28	ns
t_r	$V_{CC} = 300 \text{ V}$, $V_{GE} = -7 / +15 \text{ V}$		32	ns
$t_{d(off)}$	$I_{Cnom} = 50 \text{ A}$, $T_j = 150^\circ\text{C}$		301	ns
t_f	$R_{Gon} = R_{Goff} = 16 \Omega$		45	ns
E_{on} (E_{off})	inductive load		2,2 (1,74)	mJ
Diode - Inverter, Chopper				
$V_F = V_{EC}$	$I_F = 37 \text{ A}$, $T_j = 25 (150)^\circ\text{C}$		1,35 (1,31)	V
$V_{(TO)}$	$T_j = 25 (150)^\circ\text{C}$		(0,85)	V
r_T	$T_j = 25 (150)^\circ\text{C}$		(12,6)	mΩ
$R_{th(j-s)}$	per diode		1,6	K/W
I_{RRM}	under following conditions		44	A
Q_{rr}	$I_{Fnom} = 50 \text{ A}$, $V_R = 300 \text{ V}$		4,8	μC
E_{rr}	$V_{GE} = 0 \text{ V}$, $T_j = 150^\circ\text{C}$		0,73	mJ
di_F/dt	$= 2438 \text{ A}/\mu\text{s}$			
Diode - Rectifier				
V_F	$I_{Fnom} = 25 \text{ A}$, $T_j = 25^\circ\text{C}$		1,1	V
$V_{(TO)}$	$T_j = 150^\circ\text{C}$		0,8	V
r_T	$T_j = 150^\circ\text{C}$		13	mΩ
$R_{th(j-s)}$	per diode		1,5	K/W
Temperature Sensor				
R_{ts}	5% , $T_r = 25 (100)^\circ\text{C}$		5000(493)	Ω
Mechanical Data				
w		60	g	
M_s	Mounting torque	2,5	2,75	Nm

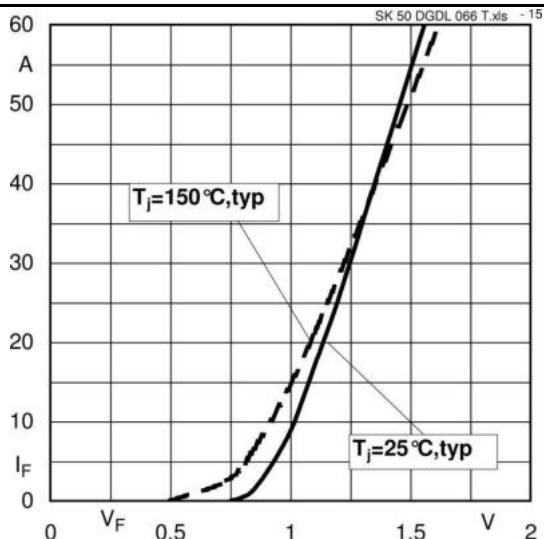


Fig.15 Input Bridge forward characteristic

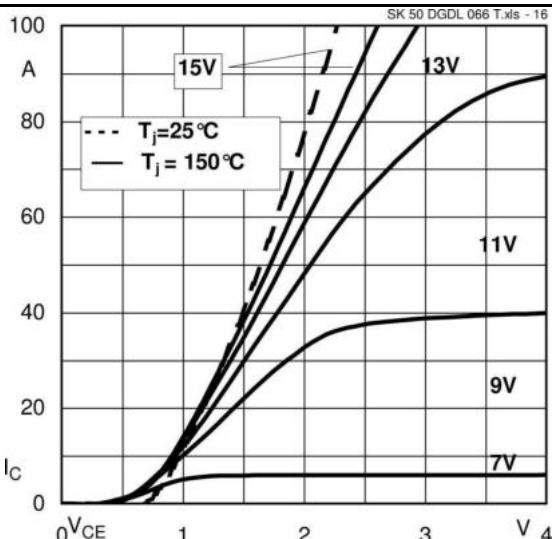


Fig.16 Typical Output characteristic

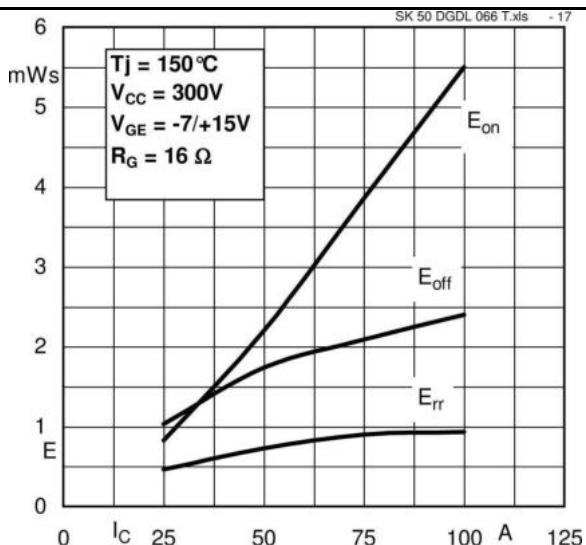


Fig.17 Turn-on/-off energy= $f(I_c)$

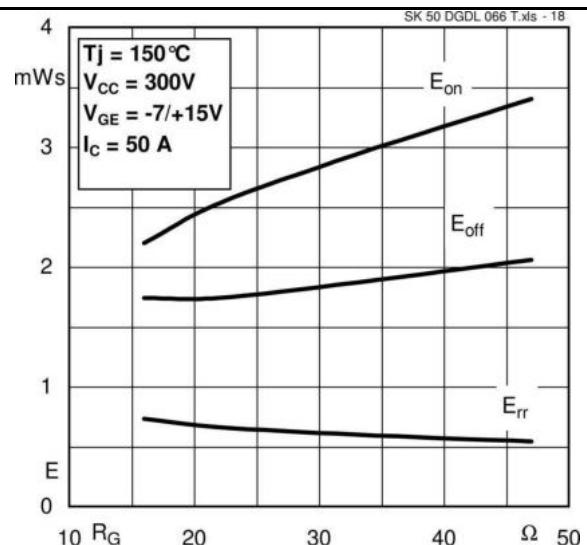


Fig.18 Turn-on/-off energy= $f(R_g)$

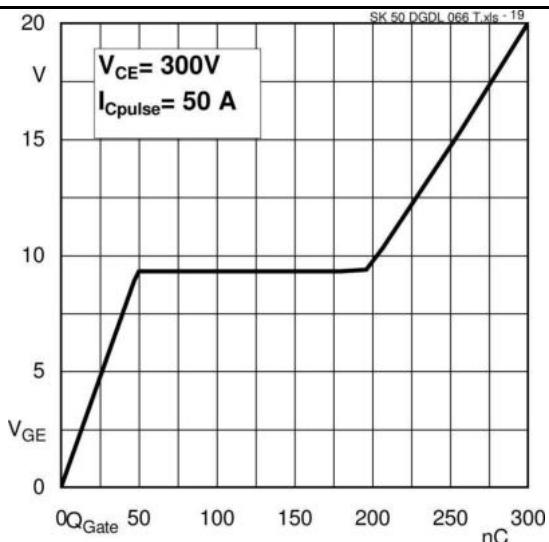


Fig.19 Typical gate charge characteristic

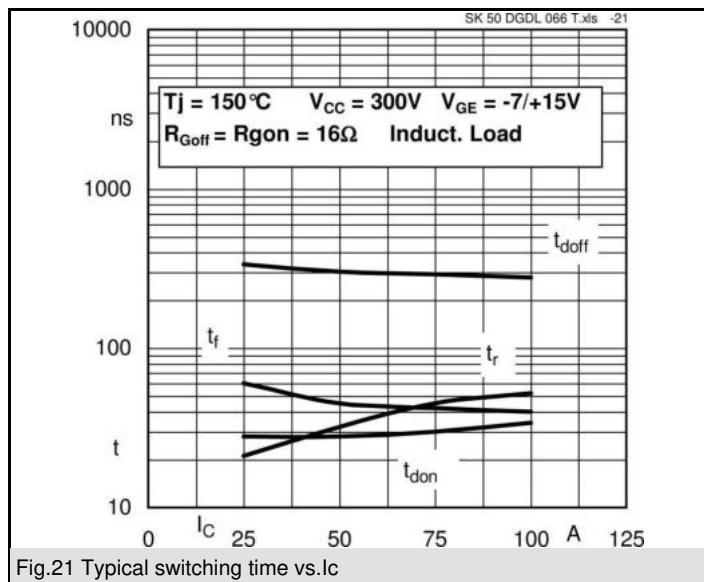


Fig.21 Typical switching time vs.Ic

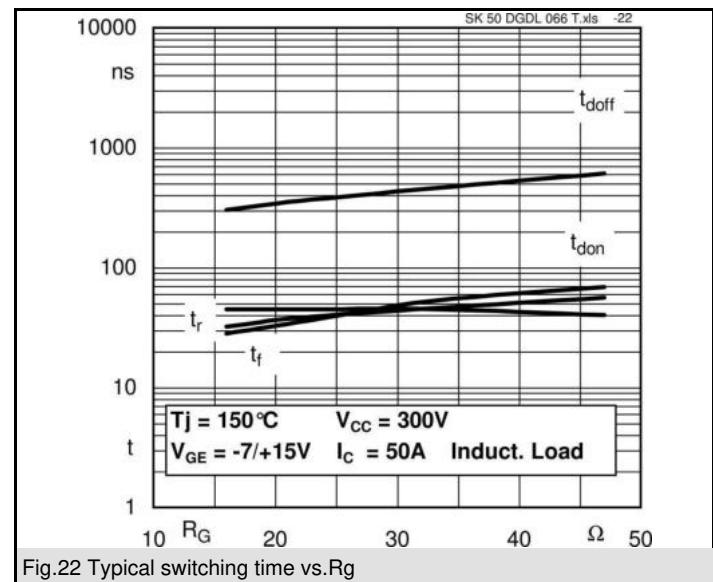


Fig.22 Typical switching time vs.Rg

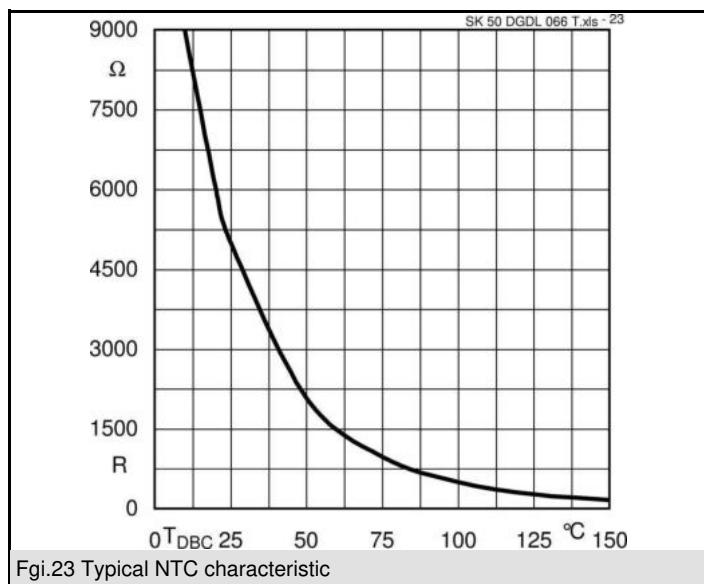


Fig.23 Typical NTC characteristic

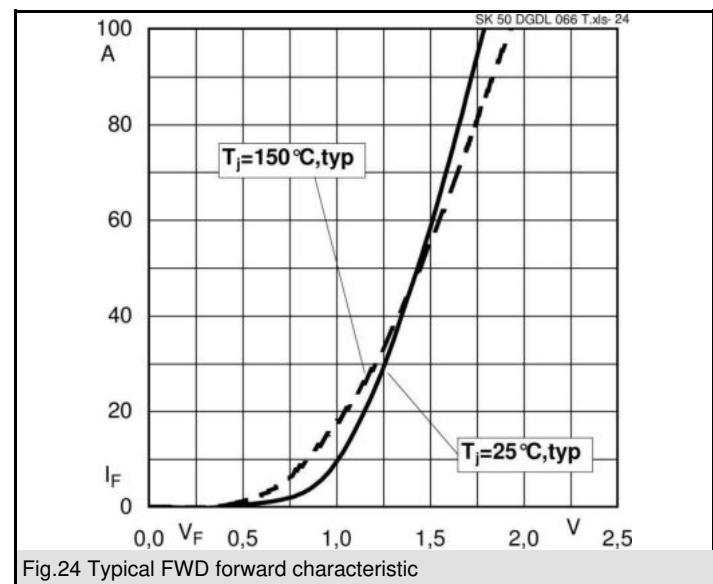
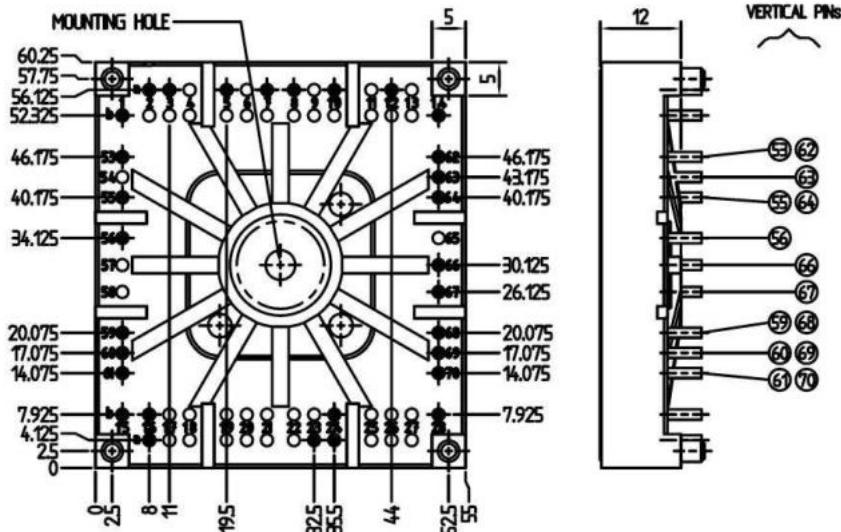
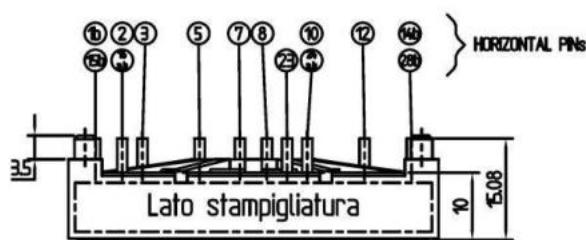




Fig.24 Typical FWD forward characteristic

Case T 75
(pin without
letter refers
to row "a",
unless
otherwise
specified)

UL recognized
file no E 63 532

Case T 75 (Suggested hole diameter for the solder pins in the circuit board: 2mm.
Suggested hole diameter for the mounting pins in the circuit board: 3,6mm)

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.